Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun-Wen Wang, Hai-Bin Song, Feng-Bo Xu , Qing-Shan Li and Zheng-Zhi Zhang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin, Weijin Road No. 94, Tianjin, People's Republic of China

Correspondence e-mail:
wjwchlwx@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.050$
$w R$ factor $=0.145$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,2-Bis(3,5-dimethylpyrazol-1-yl)-anti-[2.2]paracyclonaphthane

The title compound, $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{4}$, is a new 3,5-dimethylpyrazolesubstituted paracyclonaphthane. Each of the two symmetryindependent molecules in the asymmetric unit occupies a special position on a twofold axis and exhibits an intramolecular $\pi-\pi$ stacking interaction between the naphthalene moieties. The geometry of both molecules is essentially the same, the bridged rings of the naphthalene nuclei being deformed into a boat shape.

Comment

Paracyclophanes have long been the focus of extensive structural studies. A number of interesting paracyclophane derivatives have been documented in recent years, among them such compounds as dibenzo[2.2]paracyclophane (Chan \& Wong, 1988), poly(9-hydroxyl[2.2]paracyclophan-l-ene) (Miao \& Bazan, 1994), octafluoro[2,2]p-cyclophanes (Alfonso et al., 2001) and 4,7,12,15-tetra(4-dihexylaminostyryl)[2.2]paracyclophane (Bartholomew \& Bazan, 2002). The crystal structures of the anti and syn isomers of [2,2]paracyclonaphthane (Fratini et al., 1995) and substituted derivatives of anti-[2.2]paracylonaphthanes (Gleiter et al., 1997) have also been reported.

(I)

We have synthesized a series of derivatives of anti-[2.2]paracyclonaphthane and report here the crystal structure of the title compound, (I).

The crystal structure of (I) has two symmetry-independent molecules in the asymmetric unit, each occupying a special position on a twofold axis. The geometry of both molecules is essentially the same; the structures of the two molecules are shown in Fig. 1. As in other paracyclophanes, there is intramolecular $\pi-\pi$ stacking between the two naphthalene rings. A peculiar structural feature is the deformation of the bridged rings of the naphthalene systems into a boat shape, the

Received 9 September 2004 Accepted 11 October 2004 Online 22 October 2004

Figure 1
The structures of the two independent molecules of the title compound, showing 35% probability displacement ellipsoids and the atomnumbering scheme; H atoms have been omitted.
distortions from ideal geometries being attributed to intramolecular effects. Indeed, in the first independent molecule, atoms C 1 and C 4 are displaced towards the second naphthalene system of this molecule by 0.145 (4) and 0.159 (5) \AA, respectively, from the plane formed by atoms C2, C3, C5 and C10. The dihedral angles between the latter plane and the planes defined by $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 10$ and $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5$ are 11.7 (2) and 12.7 (2) ${ }^{\circ}$, respectively. In the second molecule, atoms C18 and C21 exhibit similar displacements of 0.147 (4) and 0.164 (5) A., respectively, from the C19/C20/C22/C27 plane; the dihedral angles between the C19/C20/C22/C27 plane and C18/C19/C27 and C20/C21/C22 are 12.0 (2) and 13.1 (2) ${ }^{\circ}$, respectively.

Experimental

The synthesis of the title compound was carried out under a nitrogen atmosphere. A tetrahydrofuran (THF) solution of pyrazole (10 g , 0.147 mmol) was added to a suspension of oil-free sodium hydride $(7.56 \mathrm{~g}, 2.94 \mathrm{mmol})$ in an ice-bath and the mixture was stirred for 1 h at room temperature. A THF solution $(100 \mathrm{ml})$ of 1,4 -bis(bromomethyl)naphthalene ($16 \mathrm{~g}, 0.05 \mathrm{~mol}$) was added dropwise and the mixture was stirred for 24 h at 333 K . The solvent was removed using
a rotary evaporator and water $(100 \mathrm{ml})$ was added to the residue. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the dichloromethane phase was dried with anhydrous MgSO_{4} and the solvent was removed. The solid residue was chromatographed on silica gel with petroleum ether and ethyl acetate as the eluant (yield: 15%). Calculated for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{4}$: C $80.79, \mathrm{H} 6.54$, N 12.67%; found: C 80.70 , H 6.48 , N 12.71%. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.29(d, 2 \mathrm{H}), 7.69(d, 2 \mathrm{H}), 7.52(d, 2 \mathrm{H}), 7.41(t, 2 \mathrm{H}), 6.46(t$, 2 H,), $5.73(s, 2 \mathrm{H}),, 5.49(d, 2 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 2.28(s$, $6 \mathrm{H}), 2.17$ ($s, 6 \mathrm{H}$).

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{4}$
$M_{r}=496.64$
Orthorhombic, Ibca
$a=16.6732(18) \AA$
$b=16.674$ (2) A
$c=39.267(8) \AA$
$V=10916$ (3) \AA^{3}
$Z=16$
$D_{x}=1.209 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
30541 measured reflections
5619 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.145$
$S=1.06$
5619 reflections
347 parameters
H -atom parameters constrained

> Mo $K \alpha$ radiation Cell parameters from 938 reflections $\theta=2.8-26.4^{\circ}$ $\mu=0.07 \mathrm{~mm}^{-1}$ $T=293(2) \mathrm{K}$ Prism, colourless $0.32 \times 0.26 \times 0.16 \mathrm{~mm}$ 3521 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.060$ $\theta_{\text {max }}=26.4^{\circ}$ $h=-13 \rightarrow 20$ $k=-20 \rightarrow 20$ $l=-46 \rightarrow 49$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0673 P)^{2}\right. \\
& \quad+3.9798 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3} \\
& \text { Extinntion correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00047 \text { (8) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 11$	$1.462(4)$	$\mathrm{C} 12-\mathrm{C} 12^{\mathrm{i}}$	$1.565(8)$
$\mathrm{N} 3-\mathrm{C} 28$	$1.457(4)$	$\mathrm{C} 18-\mathrm{C} 28$	$1.517(4)$
$\mathrm{C} 1-\mathrm{C} 11$	$1.526(4)$	$\mathrm{C} 21-\mathrm{C} 29$	$1.507(4)$
$\mathrm{C} 4-\mathrm{C} 12$	$1.515(4)$	$\mathrm{C} 28-\mathrm{C} 28^{\mathrm{ii}}$	$1.578(6)$
$\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$1.582(6)$	$\mathrm{C} 29-\mathrm{C} 29^{\mathrm{ii}}$	$1.586(8)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$111.83(17)$	$\mathrm{C} 18-\mathrm{C} 28-\mathrm{C} 28^{\mathrm{ii}}$	$111.67(17)$
$\mathrm{C} 4-\mathrm{C} 12-\mathrm{C}^{\mathrm{i}}$	$111.7(2)$	$\mathrm{C} 21-\mathrm{C} 29-\mathrm{C} 29^{\mathrm{ii}}$	$111.4(2)$

Symmetry codes: (i) $1-x, \frac{3}{2}-y, z$; (ii) $1-x, \frac{1}{2}-y, z$.
Even though the a and b axis lengths are essentially identical and an approximate diagonal mirror symmetry pattern is observed in the reflection intensities $[I(h, k, l) \simeq I(k, h, l)]$, numerous attempts to solve the structure in one of the possible tetragonal space groups proved to be unsuccessful. However, we managed to obtain a plausible model in the orthorhombic space group Ibca, which, nevertheless, could not be refined to an R value of less than 0.13 . At this point, we considered that a twinned orthorhombic crystal with a and b equal in length might emulate tetragonal symmetry as a result of exchange of the two axes. This twin model was successfully applied, dramatically reducing the R value. PLATON (Spek, 2003) was used to check the geometric consistency of the structure and did not reveal any problems or overlooked symmetry. H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and included in the

organic papers

final cycles of refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atom $\left[1.5 U_{\text {eq }}(\mathrm{C})\right.$ for methyl H atoms].

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 20342006).

References

Alfonso, D., Escobedo, J. O., Read, M. W., Fronczek, F. R. \& Strongin, R. M. (2001). Tetrahedron Lett. 42, 3555-3557.

Bartholomew, G. P. \& Bazan, G. C. (2002). J. Am. Chem. Soc. 124, 5183-5196. Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chan, C. W. \& Wong, H. N. C. (1988). J. Am. Chem. Soc. 110, 462-469.
Fratini, A. V., Chabinyc, M. L., Perko, T. J. \& Adams, W. W. (1995). Acta Cryst. C51, 904-908.
Gleiter, R., Staub, K., Irngartinger, H. \& Oeser, T. (1997). J. Org. Chem. 62, 7644-7649.
Miao, Y.-J. \& Bazan, G. C. (1994). J. Am. Chem. Soc. 116, 9379-9380.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

